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Abstract—This paper presents experimental validation of the
coupled leakage inductance transformer model. It is shown that
the coupled approach yields the same results as the indefinite
admittance matrix method of BCTRAN. A topologically correct
three-phase shell-type transformer model is proposed. The connec-
tion points between the leakage and magnetizing inductances are
properly identified, which makes the new model superior to BC-
TRAN and the hybrid models by providing physical consistency.
In addition, experimental verification of a method to calculate
the short-circuit inductances is presented. New explanations on
the division of leakage flux and on the mathematical equivalence
between the T- and II-equivalent models are also given.

Index Terms—Leakage inductance, low-frequency electromag-
netic transients, topological model, transformer modeling.

NOMENCLATURE

N Number of windings (or coils, if the windings are
subdivided).

N, Number of common turns. Can be set to one.

Ny, N,  Number of turns for the primary and secondary
windings, respectively.

o Leakage flux.

O Core flux.

% Leakage reluctance.

A Core reluctance.

T Magnetomotive force.

v Coupled leakage inductance.

A Flux linkage.
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i Current.

L; Leakage inductance.

L. Core inductance.

L, Saturated core inductance.

L. Short-circuit inductance.

le Core length.

ltor Total core length.

A Core cross section.

I Permeability.

K Leakage inductance split ratio.

I. INTRODUCTION

HE MOST accurate transformer models for low-fre-

quency electromagnetic transients (below the winding
first resonance frequency, typically a few kilohertz ([1], Section
1)) have a physical basis. In these models, the magnetic flux
is confined inside predefined paths called flux tubes. These
models are called topological, since each model element rep-
resents a part of the reluctance in the magnetic-field physical
path. These models are used in electromagnetic-transients
(EMT)-type programs instead of vectorial field models, be-
cause the computational cost involved with FEM simulations
would be prohibitive due to three facts: 1) the transient nature
of the phenomenon, which would require computing a field
solution for each time-step; 2) the nonlinearities of transformer
cores; and 3) the need to model not just one transformer but
several of them (depending on the system configuration being
studied).

Even though the more recent models proposed in the litera-
ture are topological and, thus, physically based, it can be seen
that for a given transformer configuration, many different “topo-
logical” models exist. For instance, for the three-phase three-
legged stacked-core transformer (with two and three windings),
a shortened list of models is given by [2, Fig. 5.5], [3, Fig. 4.18],
[4, Fig. 3], [5, Fig. 2.15], [6, Fig. 2],[7, Fig. 6(b)], and [8, Fig. 2].
If the models are physically based, why are there so many dif-
ferent topological models for the same transformer type? The
answer is: because of leakage flux.
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In theory, if magnetic insulators existed, the magnetic flux
could be entirely confined within the magnetic “conductors,” as
is the case for electric circuits at low frequencies. The key dif-
ference between electric and magnetic circuits is the difference
in the relative values of magnetic permeability and conductivity
between conductors and insulators. Since the ratio of permeabil-
ities of oil (or air) and iron is in the range of 10°-10*, some
of the magnetic flux leaks from the magnetic core, whereas the
ratio of conductivities of pure air (or polymers) and copper is
in the order of 10?—102®. According to [9], finding an equiva-
lent magnetic circuit with leakage flux is similar to deriving an
equivalent electric circuit for a network of copper conductors
immersed in an electrolyte solution. Hence, the chosen paths
(or flux tubes, to be more precise) and the points of connection
of leaks to the circuit can vary from one model to another.

Despite the fact that discrepancies exist due to the particular
choice of flux paths, another key difference comes from the fact
that some models divide the leakage flux between a pair of wind-
ings into two fluxes, while others do not. This can be seen in
[10, Figs. 7 and 8], where the leakage flux is divided, compared
to [6, Figs. 1 and 2], where it is not divided. This difference in
the modeling of leakage flux is highlighted in [5, Chs. 1 and 2],
where the two approaches were, respectively, called the inte-
gral flux approach and divided flux approach. Both approaches
are explained in Section II.

The main problem with those topological models is their
failure to adequately represent short-circuit conditions for
transformers with more than two windings (see [11, Sec. III]).
For topological models of N-winding transformers based on
the integral flux approach, there are N — 1 leakage inductances,
and for those based on the divided flux approach, there are N
leakage inductances. Since there are N(N — 1)/2 different
pairs of short-circuit combinations, it can be seen that these
approaches will fail to represent all cases (they can work only
for a given number of windings V).

To alleviate this problem, it was proposed in [4], [12], and
[13] to use coupled inductors (or a mesh-equivalent network)
to reproduce the NN — 1)/2 pairs of short-circuit conditions,
where the indefinite admittance matrix can be calculated with
the method proposed in [14] (BCTRAN). However, this rep-
resentation of leakage inductances is no longer topological, it
is just a solution for reproducing more accurately the terminal
short-circuit measurements. This is highlighted in [13, p. 77].
In order to connect a topological core model to the short-circuit
admittance matrix, one or more fictitious windings are neces-
sary, where a portion of the short-circuit admittance is divided
with this approach. This approach was called the hybrid model
in [4] and [15] to emphasize the fact that it uses a topological
core model with a more appropriate representation of short-cir-
cuit admittances.

Even though the hybrid approach solves the problem of
inadequacy between terminal short-circuit measurements and
the values calculated with topological leakage models, it raises
other issues. First, how many fictitious windings are required?
According to [12] and [16], there are two fictitious windings «
and 3, whereas there is only one in [4]. Second, how should the
short-circuit admittance be split to account for these windings?
The proportionality factor K of [4], to derive a “leakage induc-
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tance” between the inner winding and the fictitious winding, is
proposed to be K = 0.5 in [17]. In [6], a value of K = 0.33
is calculated from classical ampere-turn diagram formulas,
assuming that the fictitious winding is infinitely thin. However,
it was shown in [18] that these formulas can be inaccurate if
the flux is not axial. Furthermore, in [12], a coupling factor
6 = 10% is used to couple the short-circuit admittance matrix
to the fictitious winding. Third, it is mentioned in [17] that:
“The artificial core winding is related to the leakage channel
between the inner physical winding and the core.” However,
which winding is the inner winding in the case of a sandwiched
winding design? The issues raised here show the physical
inconsistencies that exist with this approach.

Based on the aforementioned arguments, it can be concluded
that a topological leakage model was needed. Such a model must
reproduce the terminal short-circuit measurements without the
use of fictitious windings.

This type of model was first presented in [11], but the objec-
tive of this paper was to solve the numerical instability prob-
lems caused by the negative inductance in the star-equivalent
circuit of a three-winding transformer, with the use of coupled
leakage inductances. This principle was generalized to single-
phase N-coil! transformers in [19].

In this paper, it is first demonstrated how this model is related
to the integral flux approach and it is also explained why this
approach is better. Afterwards, the mathematical equivalence
between the divided and integral flux approaches is shown for
a single-phase two-winding transformer, assuming the core in-
ductances are linear. Then, a new relationship is derived for the
well-known T-network model (divided flux approach) to calcu-
late the correct ratio on how to split the short-circuit inductance
between the two leakage inductances, according to the core and
windings’ geometries. It is also demonstrated that when the core
is considered nonlinear, for the T-network model to be mathe-
matically equivalent, it requires nonlinear leakage inductances.
How to calculate the coupled leakage inductance matrix from
the short-circuit inductance matrix is explained next. Finally,
this paper also presents a new model for a three-phase shell-type
transformer that uses the coupled leakage approach.

The main contributions of this paper are the validation with
measurements of the coupled leakage inductance model, devel-
oped in [19], and the method presented in [18] to calculate its
short-circuit inductances; new explanations on the division of
leakage flux and on the mathematical equivalence between the
T- and II-equivalent models; and the extension of the method
presented in [19] to a three-phase shell-type transformer model.

II. INTEGRAL AND DIVIDED FLUXES

In order to understand the differences between the two
methods, let us look at a simple example: the single-phase
two-winding shell-type transformer with cylindrical windings.
In the divided flux approach, the magnetic flux is split into
three components: 1) the leakage flux of winding 1 ¢y, ; 2) the
leakage flux of winding 2 ¢;,; and 3) the common (or main)
flux ¢., as shown in Fig. 1(a). For the integral flux approach,
this division is not made and only one leakage flux can exist,

1Coil refers to a fraction of a winding.
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Fig. 1. Magnetic flux paths of a single-phase two-winding shell-type trans-
former. (a) Divided flux approach. (b) Integral flux approach.
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Fig. 2. Equivalent magnetic circuits of a single-phase two-winding shell-type
transformer. (a) Divided flux approach. (b) Integral flux approach.
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Fig. 3. Dual electric circuits of a single-phase two-winding shell-type trans-
former. (a) Divided flux approach. (b) Integral flux approach.

namely, the flux ¢;,, circulating between the windings, as seen
in Fig. 1(b).2 The equivalent magnetic circuits (after simplifica-
tions3) of both approaches are illustrated in Fig. 2, and the dual
electric circuits are shown in Fig. 3. It can be seen that for this
example, the divided flux approach leads to the well-known
T-network, whereas the integral flux approach results into
the TI-network.4 Even though the two approaches are related
through the star-delta transformation (if the nonlinear elements
are assumed linear) and are equivalent for this example, it is
not generally the case for all integral flux and divided flux
magnetic circuits (e.g., with more than two windings). Thus, it
is necessary to investigate which method is more appropriate
and more generic, to model a transformer on a topological
(physical) basis.

2The shunt air paths (shown with dashed lines) are usually omitted, since they
can be combined with the core’s nonlinear reluctances . #:, and . 7., .

3Since the geometry is symmetric along the axis AD, both halves are in par-
allel (B and B’ are virtually connected and so are C and C’, because they have
the same magnetic scalar potentials). Therefore, ¢, is the flux flowing in the
path CC’-D-A-BB’, ¢, is the flux flowing in the core from BB’ to CC’, and
@1, is the flux through the air from BB’ to CC’.

4For the core-type transformer, the same procedure can be followed and the
dual circuit for the integral flux approach will be the same, as illustrated in [20,
Fig. 4.8].
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This question was studied in [21]-[23] and later recalled in
[5]. It was concluded that the T-network, hence the divided flux
approach, is merely the result of mathematical manipulations,
whereas the II-network (integral flux approach) is physically
based. Furthermore, it is highlighted in [5] that the star-delta
transformation is only valid for linear elements. Thus, the in-
tegral flux approach should be privileged over the divided flux
approach for the derivation of a topological transformer model,
since the mathematical equivalence (existence and uniqueness
of a solution) between the models is no longer guaranteed.

Despite the fact that the model mostly used the T-network for
single-phase two-winding transformer, a few authors also pro-
posed the II-network (see, for instance, [24]-[26, pp. 250-251].
More recently, this model was also covered in ([20, Sec. 4.4.2]
and in [27], where it is mentioned that the I[-network is the topo-
logical model for the single-phase transformer.

The division factor between the leakage inductances L;, and
L, of the T-network and the short-circuit inductance, which is
typically assumed to be 0.5 or 0.75-0.9 [28, p. 2053], actually
depends on the division of the core inductances of the II-net-
work (ratio of core lengths). This is demonstrated in the next
section, using the star-delta transformation.

III. STAR-DELTA TRANSFORMATION

Even though it was claimed that the star-delta transforma-
tion cannot be used for nonlinear elements in [5], it is useful
to demonstrate the relationship that exists between the inte-
gral flux and the divided flux approaches for single-phase trans-
formers from a piecewise linear perspective. The inductances
Ly, , Ly, and L, in the divided flux approach are related to the
inductances in the integral flux approach through the star-delta
transformation

Lc Ll 2
L, =— """ =KL, 1
ll [/Cl +ch +L],12 1 llZ ( )
Le, Ly
Ly, = ——e2he  _gp, )
13 Lcl + LC‘_Z + Lllg ? ll_ ( )
L., L.,
. )

B LCl + LCQ + Ll12 .

Since L., + L., > L,,, if the core is unsaturated, it can be
approximated that

Le & (LeyLey)/(Ley + Ley) 4)
Ky = L, [(Le, + Ley) (5)
Ky~ Ley/(Ley + Ley) (6)

so that Ky + K2 ~ 1 and L, approximately equal to L., in
parallel with L.,. Considering from Fig. 3 that N, = 1, the
inductances can be rewritten in terms of the permeability 1, the
core lengths /., , ., and the core cross-sections A, , A.,

pAcy
I,
K& pAL | pAgy 7
ley P
pAc,
1.
Kym ——2 (8)
pA HAy
Bre 4 B

T
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(a) (b)

Fig. 4. Equivalent magnetic circuits for the three-winding single-phase shell-
type transformer. (a) Divided flux approach. (b) Integral flux approach.
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Fig. 5. Dual electric circuits for the three-winding single-phase shell-type
transformer. (a) Divided flux approach. (b) Integral flux approach.

In the case of a core-type single-phase transformer, A., = A.,.
For a shell-type single-phase transformer, this is also the case if
the outer leg cross-section is half the cross-section of the center
leg.5 Hence, in both cases, (7) and (8) become

Kl ~ lc2 /ltot
K2 ~ lcl /Ztot

(€))
(10)

where I = I, + [, is the total length.

An important conclusion is that in the linear case, the primary
leakage inductance I, is proportional to the ratio /., /l.; and
the secondary leakage inductance L, is proportional to the ratio
Ie, /ltot - This claim was also made in [29, p.71], but without ex-
planation. It is also mentioned that the two models are math-
ematically equivalent, which is true with linear (unsaturated)
inductances.

If we consider that L., and L., are represented by the two-
slope piecewise linear curve presented in Fig. 6, in the case
where the core is fully saturated we obtain

Lc satLl .
L, = 1 12 — K.L. 1
151 quat + LCZsa‘t + Ll12 1400 ( )
Lc SatLl—.
L 5 = 2 12 — KoL 12
Iz Lclsat + ngsat + LI12 24405 (12)
Lc sa LL sa
LC = 18at osat (13)

Lclsat + chsat + Lllz

SNote that in practice, for shell-type power transformers, the outer legs (and
yokes) cross-sections may be larger than half the cross-section of the center leg.
In that case, the reluctance .~ | that comes from the flux path CC’-D-A-BB’
(as mentioned earlier) would need to be divided into two reluctances (in series).
One for the center leg (path D-A) and one for the two yokes (paths CC’-D and
A-BB).

2183

Lp

)

Fig. 6. Two-slope piecewise-linear magnetizing curve for L., and L., of the
IT equivalent.
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Fig. 7. Resulting piecewise-linear leakage curve for Z;, and L, of the T
equivalent.

where the saturation inductances L, sat and L, .t (represented
by L g in Fig. 6) are now in the order of magnitude of L;,, (since
they all represent flux tubes with air permeability ). Hence,
it means that the leakage inductance split ratios K; and K are
not constants but functions of the saturation level of the core.
Furthermore, if L., starts to saturate, but L., is not yet satu-
rated, we have the intermediate case where K5 = 1, and con-
versely, when L., starts to saturate, but L., is not yet saturated
(again assuming two-slope saturation curves), then K1 =~ 1.
Note that the core inductance L. in the divided flux approach is
also dependent on the leakage inductance L;, ,, as the core starts
to saturate.

The resulting curves for L;, and L;, are shown in Fig. 7 and
for L. in Fig. 8, for this particular case. An example with numer-
ical values is presented in the Appendix. Thus, the two models
are mathematically equivalent only if we consider nonlinear par-
tial (divided) leakages for the T model. This partially explains
the difference observed between both models in [30], where
the divided leakage inductances were considered linear. In that
case, if the parameters are made to fit measurements on one side
for the T-equivalent model (with linear leakage inductances),
the behavior of this model will be incorrect viewed from the
other side. Hence, the T model will not be reversible® with linear
leakage inductances. However, the reversibility of the II-equiv-
alent model was demonstrated in [27] and later in [31].

Physically, it makes sense to have nonlinear divided leak-
ages, because the divided leakage fluxes partially link the core,
as shown in Fig. 1(a). Furthermore, in the T-equivalent model
theory, leakage inductances are defined as the difference be-
tween self and mutual inductances [9, p. 314], where both are

By “not reversible,” it is meant that if the parameters are calculated to fit
with the nonlinear curve seen from one terminal, the nonlinear behavior will be
incorrect seen from the other terminal.
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Fig. 8. Resulting piecewise-linear magnetizing curve for L. of the T
equivalent.

nonlinear. Since the correct representation of leakage in the di-
vided flux approach is more complex than in the integral flux ap-
proach, it is preferable to use the later representation. The gen-
eralization to a N-winding transformer is also easier that way,
as shown in the next section.

IV. COUPLED LEAKAGE APPROACH

As mentioned in Section I, the problem with most topological
models is their inability to reproduce the short-circuit measure-
ments for more than two windings for the integral flux approach,
and for more than three windings for the divided flux approach.
This is explained in the following paragraphs.

By adding a third cylindrical winding to the transformer, the
equivalent magnetic circuit of Fig. 2(a) becomes the one in
Fig. 4(a), and its dual electric circuit is shown in Fig. 5(a), which
is commonly referred to as the star circuit [32]. The fact that the
star circuit is not valid for more than three windings in [32, p. 14]
can be observed from Fig. 5(a), where a fourth winding would
add a fourth branch connected to L.: there would be only four
leakage inductances, whereas there are six short-circuit condi-
tions to satisty (Lsc,s Lscyas Dscry s Lscogs Dscogs Lscay )-

Similarly, for the integral flux approach, let us add a third
cylindrical winding to the transformer. The equivalent mag-
netic circuit of Fig. 2(b) is shown in Fig. 4(b) and its dual
electric circuit is shown in Fig. 5(b). Overall, for an N -winding
transformer (or N-coil, if the windings are subdivided),
there are N(N — 1)/2 different short-circuit pairs. Hence,
for a three-winding transformer, there are three short-circuit
pairs: Lgc,,, Lise,; and Lg.,,. However, as can be observed in
Fig. 5(b), there are only two leakage inductances and three
short-circuit conditions to satisfy. For this reason, this approach
is not valid for more than two windings.

The problem of finding an equivalent circuit for transformers
with more than three windings is studied in [29, pp. 112—-124].
For transformers with four windings, a star equivalent circuit
is proposed in [33], as shown in Fig. 9, where the number of
independent inductances is six (and the number of short-circuit
conditions to satisfy is six, as mentioned earlier). The star equiv-
alent circuit for the five-winding transformer is presented in [34]
and is generalized for the NV-winding transformer in [35]. How-
ever, these models are not topological, since each inductance of
the star equivalent circuit has no physical meaning. Hence, in
that case, the indefinite admittance matrix method (BCTRAN)
should be used instead, because of its simplicity.
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Fig. 9. Star equivalent circuit for the single-phase four-winding transformer
(core inductances not shown).

Lll les

Fig. 10. Simplified star equivalent circuit for the single- hase N -winding trans-
former (core inductances not shown).

A similar but simpler approach is to remove some of the in-
ductances in the star equivalent circuit (for instance, short-cir-
cuit L;, or L;, from Fig. 9) to build a simplified star equiv-
alent circuit, as illustrated in Fig. 10. This name comes from
the fact that the model has only 2N — 3 inductances, whereas
the number of different short-circuit pairs is N (N — 1) /2. Itis
shown in [25] that some equations are not independent and must
be removed, in order to calculate all the parameters. This type of
model is presented for instance in [36, Fig. 4], [2, Fig. 6.2], [37,
Fig. 6], and [13, Fig. 4.10]. It can also be explained by adding
the inductances L;, to L;, _, in Fig. 10 to the integral flux ap-
proach to match short-circuit measurements. It is said that these
inductances compensate for the finite radial thickness of wind-
ings 2to N — 1 [37].

It is proposed in [11] to use coupled leakage inductances
for the three-winding transformer case. The motivation of [11]
was to find an alternative to the star circuit, where there ex-
ists (for typical transformer designs) a negative leakage induc-
tance that can lead to numerical instabilities during simulations.
This method was generalized as a leakage model in [19], for a
N-coil transformer, and is presented next. The addition of mu-
tual leakage inductances in the integral flux approach allows to
match short-circuit measurements.

The short-circuit inductance matrix [Ls] is of the following
form:

0 Ly, Lge,n
Lye,, 0 Lgeyn
[LSC] NxN — : : : (14)
Licn:  Lucps 0

where the diagonal elements are zero, since a short-circuit of a
coil with itself is zero, and where the matrix is symmetric, since
the short-circuit inductances are reciprocal.
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LiN-1
L2 LyN-1
i Loy LN-1N-1
1 N

Fig. 11. Coupled leakage model for the single-phase V-winding shell-type
transformer with cylindrical windings (reciprocal mutual inductances /;; are
not shown).

From Figs. 3(b) and 5(b), it can be seen that for the integral
flux approach, there are NV —1 leakage inductances for an N -coil
transformer and the dual electric circuit for the single-phase
transformer can be generalized for /V cylindrical coils to the one
presented in Fig. 11. In matrix form, it is shown in [19] that the
elements of this new coupled leakage inductance matrix [ ] in
terms of the short-circuit inductances are given by

J03) = el d + 1) + Lacli+1,)
—Loo(i,j) — Lo(i+ 1,5+ 1)) (15)

For the particular case of the three-winding transformer, the
short-circuit inductance matrix [Ls.] is given by

0 Lscyy  Lscys
[Lsc] = Lsclg 0 L3623 (16)
Licis  Lscay 0
and the coupled leakage inductance matrix [ ] is
Li(‘u (Lécw —Lsein 7L5023)
()= | g 2 : a7

sc1y —Lseqa
13 12

Lye,s

which is equivalent to [11, (7)—(8)]. Note that the conclusion in
[11] that the mutual inductance is positive is not necessarily true
if the windings have different heights. This is the case for the
two transformers presented next, for which some of the mutual
inductances are negative.

It should be emphasized here that this method is different
from the one presented in [38], which was also termed the cou-
pled leakage model. Indeed, by looking at its constitutive equa-
tion in [38, (4)], it can be seen that this is the classic self/mutual
inductances representation of the transformer (as presented for
instance in [14, (4)] and that it includes not only leakage induc-
tances, but also core inductances.

V. METHODS

As a verification for the analytical method presented in [18]
for the calculation of the short-circuit inductance matrix and
also to test the new coupled leakage approach proposed by [19],
short-circuits tests were performed on a single-phase, 360 MVA,
400/v/3 kV /24 kV, 50 Hz, two-winding shell-type transformer
with pancake coils and a three-phase 96 MVA, 400 kV/3 x 6.8
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Fig. 12. Magnetic flux paths for the three-phase N -winding shell-type trans-
former with pancake windings.

kV, 50 Hz, four-winding shell-type transformer with pancake
coils. The windings of the 360 MVA transformer are divided
into 44 pancake coils, and the four windings of the 96 MVA
transformer are divided into 26 pancake coils per phase.

For single-phase shell-type transformers with pancake wind-
ings, it can be demonstrated that the dual electric circuit is the
one shown in Fig. 11. For the three-phase shell-type transformer
with pancake windings shown in Fig. 12, the magnetic equiva-
lent circuit is illustrated in Fig. 13,7 and its dual electric circuit
is shown in Fig. 14.

Since the short-circuit measurements between coils are never
available, the method presented in [18] was used to calculate
the short-circuit inductance between each coil pair to fill up the
short-circuit inductance matrix (14). With the short-circuit in-
ductances known, the coupled leakage matrix (15) can be com-
puted. The indefinite admittance matrix method presented in
[14] (BCTRAN) was used to verify the results obtained with the
approach presented in this paper. The commonly used short-cir-
cuit model of [14] is also used in hybrid topological models such
as [12] and [4], with modifications to account for the fictitious
windings. The same short-circuit inductance matrix [Lg.] was
used for both methods.

Simulations were performed for both transformers with
the two approaches and the short-circuit inductances between
windings (coils are regrouped into windings) were calculated
and compared with measurements. For the 96 MVA trans-
former, the positive-sequence short-circuit inductance was
measured between the high-voltage winding (winding 1) and
each of the low-voltage windings (2 to 4). In all simulation
cases, the low-voltage winding is short-circuited and the
high-voltage winding is energized with voltages corresponding
to the measurements.

VI. RESULTS

The results for the short-circuit inductance of the 360 MVA
transformer are presented in Table I between the HV and the LV
windings. The difference between measurement and simulation
is 0.04%.

As for the 96 MVA transformer, the positive-sequence short-
circuit inductances are shown in Tables II-1V. Each low-voltage

"Note that in general, the magnetomotive forces of the center phase are re-
versed with respect to the outer phases. This is accounted for with the appro-
priate electrical connections to the sources (reversed source polarity for the
center phase), outside the magnetic equivalent circuit.
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Fig. 13. Equivalent magnetic circuit for the three-phase N -winding shell-type transformer with sandwiched windings (mutual reluctances . ;; are not shown,

except for .74,,).

Phase A

Phase B

Phase C

Fig. 14. Coupled leakage model for the three-phase /N -winding shell-type transformer with sandwiched windings (mutual inductances  ;; are not shown, except

for 7 a,).

TABLE 1
SHORT-CIRCUIT INDUCTANCE FOR THE 360 MVA TRANSFORMER
SEEN FROM THE HV SIDE

Method Short-circuit inductance [mH]
Measurement 69.43
Coupled leakage model 69.4598
BCTRAN 69.4598

TABLE 11
POSITIVE-SEQUENCE SHORT-CIRCUIT INDUCTANCE WINDINGS 1 AND 2 FOR
THE 96 MVA TRANSFORMER SEEN FROM THE HV SIDE

Method Short-circuit inductance [H]
Measurement 1.22
Coupled leakage model 1.2934
BCTRAN 1.2934

TABLE III
POSITIVE-SEQUENCE SHORT-CIRCUIT INDUCTANCE WINDINGS 1 AND 3 FOR
THE 96 MVA TRANSFORMER SEEN FROM THE HV SIDE

Method Short-circuit inductance [H]
Measurement 1.23
Coupled leakage model 1.2707
BCTRAN 1.2707

winding is tested separately. The errors for the short-circuit in-
ductances of each low-voltage winding are 6.02%, 3.31% and
7.93%, respectively. Again, the error observed with BCTRAN
comes from the fact that the method presented in [18] was used
to calculate the short-circuit inductance between each coil pair
to fill up the short-circuit inductance matrix, since short-circuit
measurements between coils are never available.

TABLE 1V
POSITIVE-SEQUENCE SHORT-CIRCUIT INDUCTANCE WINDINGS 1 AND 4 FOR
THE 96 MVA TRANSFORMER SEEN FROM THE HV SIDE

Method Short-circuit inductance [H]
Measurement 1.27
Coupled leakage model 1.3707
BCTRAN 1.3707

VII. DISCUSSION

It can be seen in Tables -1V that there is no difference be-
tween the results of the coupled leakage method and the in-
definite admittance matrix method (BCTRAN). Hence, from
a short-circuit point of view, the two methods are equivalent.
However, the coupled leakage model is topologically correct
and can accommodate a topological core model without the use
of fictitious windings, whereas one or more fictitious windings
are necessary to connect the indefinite admittance matrix to the
topological core in [4] and [12]. The establishment of such fic-
titious winding is arbitrary and is not supported by any physical
basis. As such, the coupled leakage model proposed in [19], and
generalized here for the three-phase shell-type transformer, ap-
pears to be a better and more intuitive approach for modeling
leakage flux in topological transformer models.

Another interesting result observed from Tables I-IV is that
the method presented in [18] for the calculation of the short-cir-
cuit inductance matrix [L,.], was validated with experimental
short-circuit measurements for two transformers. The higher
differences observed in the three-phase case can be explained
by the fact that the 2D approximation used in the analytical
method [18] used for evaluating the short-circuit inductances
is less accurate for that case. Nevertheless, the results obtained
are acceptable.
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VIII. CONCLUSION

In this paper, the differences between topological transformer
models were explained through the concepts of divided and in-
tegral fluxes. It was shown that the divided flux approach is the
result of mathematical manipulations and that the integral flux
approach should be preferred, since it represents more closely
the physical path of the flux lines in a transformer. Furthermore,
a relationship was derived to calculate the split ratio of leakage
inductances of the T-network model for the single-phase two-
winding transformer, in the case where the core inductances are
assumed linear. When the core inductances are nonlinear, it was
demonstrated that nonlinear leakage inductances are necessary
in the divided flux approach, in order for the models to be math-
ematically equivalent, whereas leakage inductances in the inte-
gral flux approach are linear by definition (flux tubes in air).

Also, a new model was proposed for the three-phase shell-
type transformer that uses the coupled leakage model presented
in [19]. This new approach has the advantage of modeling all
short-circuit conditions and works for transformers with more
than two windings (or coils), whereas the uncoupled leakage
inductances in topological models are limited to a very specific
number of windings (two for the integral flux model and three
for the divided flux model).

Furthermore, it was shown that the indefinite admittance ma-
trix (BCTRAN) and the coupled leakage model give the same
short-circuit results. However, since the coupled leakage model
is topologically correct, no fictitious winding is required, and
the coupled inductances can be connected directly to the topo-
logical core model. This represents an important improvement
over existing hybrid topological models.

Finally, the analytical method presented in [18] to calculate
the short-circuit inductance matrix was verified for two trans-
formers, and the results show good agreement between the mea-
surements and the calculated short-circuit inductances.

APPENDIX

A numerical example for the mathematical equivalence of T
and II models is provided here. It is assumed that ., =I.,, but
it is not mandatory.

o Il-equivalent: L4 = 2 H, Lp = 2mH, Ay, = 0.5994 Wb,

L112 = 0.7 mH.

o T-equivalent: Lp = 0.3499 mH, Lg = 0.6991 uH, Lp =
0.2979 mH, A¢, = 0.2095 mWb, Lg = 09998 H, Ly =
1.9973 mH, L; = 0.8511 mH, Ay, = 0.5986 Wb, Ao, =
0.5994 Whb.
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